Effect of film thickness on the thermal resistance of confined semiconductor thin films
نویسندگان
چکیده
Abstract The thermal resistance of semiconductor thin films is predicted using lattice dynamics (LD) calculations and molecular dynamics (MD) simulations. We consider Si and Ge films with thicknesses, LF , between 0.2 nm and 30 nm that are confined between larger extents of the other species (i.e., Ge/Si/Ge and Si/Ge/Si structures). The LD predictions are made in the classical limit for comparison to the classical MD simulations, which are performed at a temperature of 500 K. For structures with LF < 2 nm, the thin film thermal resistance increases rapidly with increasing film thickness, a trend we attribute to changes in the allowed vibrational states in the film. These changes are found to affect the dependence of the phonon transmission coefficient on incidence angle for the Ge/Si/Ge structures and on frequency for the Si/Ge/Si structures. When LF > 2 nm, the MD-predicted thermal resistances are independent of the film thickness for the Ge/Si/Ge structures and increase with increasing film thickness for the Si/Ge/Si structures. We attribute these results to phonon transport that is ballistic in the Ge/Si/Ge structures and more diffusive in the Si/Ge/Si structures based on comparisons to the LD predictions, which assume ballistic phonon transport. We find that this difference between the structures cannot be predicted by comparing the mode-averaged phonon mean free path to the film thickness. It can be predicted, however, by considering the frequency-dependence of the phonon mean free paths.
منابع مشابه
Thermal Analysis of Sintered Silver Nanoparticles Film
Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in material...
متن کاملA study on the dependence of DC electrical properties and nanostructure of Cu thin films on film thickness
This paper reports the correlation between film thickness, nanostructure and DC electrical properties of copper thin films deposited by PVD method on glass substrate. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used for crystallography and morphology investigation, respectively. Resistivity was measured by four point probe instrument, while a Hall effects measurement system w...
متن کاملEffect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering
Copper thin films with nano-scale structure have numerous applications in modern technology. In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...
متن کاملThermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملA study on the dependence of DC electrical properties and nanostructure of Cu thin films on film thickness
This paper reports the correlation between film thickness, nanostructure and DC electrical properties of copper thin films deposited by PVD method on glass substrate. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used for crystallography and morphology investigation, respectively. Resistivity was measured by four point probe instrument, while a Hall effects measurement system w...
متن کامل